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Void initiation and growth serve as an important mechanism in ductile failures in metals.
Particularly, on the micron-level, the extra hardening effect associated with strain gradient
is accounted for by adopting strain gradient elasto-plasticity instead of the conventional
plasticity. Effects of inertial, strain gradient hardening and thermal softening are formulated
analytically for the case where a spherical void expands under external hydrostatic stress.
As demonstrated by our results, the inertia effect firstly tends to hinder but then promotes
the void growth. The threshold stress required for rapid void growth is lifted due to extra
hardening of strain gradient so that the growth of a smaller void is delayed more remarkably.
A considerable thermal softening phenomenon is observed here, which is caused by plastic
work during the deformation process. The final void growth rate is mainly related to the
maximum loading, which is consistent with the prediction based on the classical plastic
theory.
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1. Introduction

As for high-quality ductile materials such as improved aluminum alloys and advanced high-
-strength steels, the research on their fracture and fatigue properties is becoming increasingly
important. Benzerga and Leblond (2010) suggested that ductile fracture of metallic materials
usually begins with void nucleation around external particles or other defects, then voids grow
further when plastic deformation in the surrounding medium develops, and void coalescence
finally leads to macro-level ductile fracture of the material.
Quasi-static void growth has been studied intensively. Huang et al. (1991) extended this

research to elastic-plastic materials. Chung et al. (1987) investigated the cavity bifurcation of
finite plastic materials under far-field hydrostatic tensile loads and found that cavitation stress
was of the same order of magnitude as Young’s modulus. Liu and Sayed (2013) studied the
influence of the differences in void sizes on macro-level plastic deformations. Liu et al. (2014)
analyzed the scale effect of void growth based on Taylor-plasticity. Notably, the tendencies under
quasi-static loading can be dramatically different from the dynamic cases.
Studying dynamic void growth is necessary to understand void-based failures under fast-

-applied loadings such as impacts. Johnson (1981) studied void expansion in rate-dependent
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viscoplastic solids. Ortiz and Molinari (1992) found that inertial effects dominated only when
the void size was larger than the characteristic dimension. Cortés (1992) investigated the void
growth of rigid plastic materials under hydrostatic and deviating stress by growth of voids. Wu
et al. (2003a,b) concluded that the inertia effect first hindered and then promoted the growth
of voids. Molinari and Wright (2005) suggested that in the early stages of void nucleation and
growth, although thermal, viscoplastic and strain hardening effects matter, inertia was dominant.
Navarro et al. (2018) experimentally observed that coalescence of voids could happen in the
shear bands between matrix and inclusions in some alloy steels. Interestingly, in metallic glasses
void defects also play a significant role in shear band nucleation (Luo et al., 2018). Czarnota
et al. (2006) proposed a model including inertia effect and matrix softening to simulate the
whole dynamic growth of voids. Jacques et al. (2012) proposed a model to explain the dynamic
effect caused by the growth of voids which hindered crack expansion. Sartori et al. (2015, 2016)
emphasized the influence of void shape on strengths of porous ductile materials.

For micro-scale elastic-plastic deformation, there is a strong size effect in the yield strength,
requiring a generalized plasticity. Fleck and Hutchinson (2001) proposed gradient theories
(SGPs) to explain the size effect. Wu et al. (2003a) found that the gradient effect was able
to increase the threshold stress required for voids growth, especially for smaller voids. Wilkerson
and Ramesh (2014) examined the role of dislocation kinetics and substructure evolution on the
dynamic growth of voids under very high strain rates. Although the size effect of voids has been
well studied, the ability to capture the size effect of the elastic limit observed by Chakravarthy
and Curtin (2011), Ehrler et al. (2008) and Liu et al. (2013) is yet available. On the micro-scale,
the dominant mechanism behind the size effect is believed to be strain gradient effect instead of
surface effect (Liu, 2015). Notably, in various versions of SGPs aforementioned, the size effect in
the elastic limit (Ehrler et al., 2008; Liu et al., 2013), which has been proven experimentally to
exist, is missing. To meet this challenge, Liu and Soh (2016) proposed a strain gradient elasto-
-plasticity (SGEP) that can capture all size effects, and we will analyze the gradient effect of
the dynamic void growth based on SGEP.

In the high-rate deformation considerable amount of the plastic work will be converted
into heat energy. Wright (2002) suggested that thermal softening plays a decisive role in the
development of adiabatic shear bands during the high-rate deformation. In the unstable growth
of voids, thermal softening of the material around the void may occur. The temperature of the
void surface rises sharply and even reaches the melting point, so that the strength of the material
is decreased. Thus, thermal softening weakens the gradient hardening, advancing voids growth.
We will study the effects of inertia, temperature and gradient effects on the dynamic growth of
voids.

This paper is organized as follows. Section 2 details the SGEP theoretical framework, in-
troduces the temperature function and analyzes kinematics and equilibrium equations of the
dynamic void growth. In Section 3, the effects of inertial, strain gradient hardening and thermal
softening in dynamic void growth are studied and numerical simulations are discussed. Finally,
a brief summary closes the paper in Section 4.

2. Theoretical formulation

2.1. Theoretical framework of SGEP

Here, both strains and strain gradients are expressed in an incremental form, where the strain
increment is expressed as ε̇ij = (∂iu̇j + ∂j u̇i)/2 and the strain gradient increment is expressed
as η̇ijk = ∂ij u̇k. The strain increment ε̇ij is divided into a volume strain increment part ε̇kk
and a deviatoric strain increment part ε̇′ij . The strain gradient increment η̇ijk has not been
composed, resulting in introduction of only one plastic characteristic length l. The deviatoric
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strain increment part ε̇′ij and the strain gradient increment η̇ijk are decomposed into an elastic
and a plastic part, i.e.,

ε̇′ij = ε̇
′e
ij + ε̇

p
ij η̇ijk = η̇

e
ijk + η̇

p
ijk (2.1)

The relation between stress and elastic strain is given as follows

σij = λδijε
e
mm + 2µε

e
ij (2.2)

where σij is the Cauchy stress, λ and µ are the Lamé constants. Here, according to the fact that
the elastic scale parameters are much smaller than the plastic characteristic length, the elastic
scale parameters are assumed to be zero and so that the higher order stresses are omitted.
Since only the plastic characteristic length is used, the total effective elastic-plastic strain εt,epe

can be written as

εt,epe =
{
(εee + εe)

2β + [l(ηee + ηe)]
2β
} 1
2β

(2.3)

where the contributions of strain and strain gradients to effective deformation and, therefore,
plastic hardening are controlled by the parameter β.
The power hardening law is defined as

σt =





σY + (σ
t
0 − σY )

εt,epe
εt0

if εt,epe ¬ εt0

σt0

(εt,epe
εt0

)N
if εt,epe > ε

t
0

(2.4)

with

εt0 =
( εt,epe
εee + εe

)γε
εY σt0 =

( εt,epe
εee + εe

)γσ
σY (2.5)

where σt is the current yield strength, N is the hardening index, εt0 and σ
t
0 are reference strain

and stresses, respectively, γε and γσ are material parameters to control how much ε
t
0 and σ

t
0 are

altered by the gradient effect. We assume γσ = 2γε = 2β according to the flow rule proposed by
Liu and Soh (2016).

2.2. Consideration of thermal softening

Most of the plastic work can be transformed into heat. Actually, such a phenomenon of ther-
mal softening induced by plastic deformation is an important mechanism in the development of
shear bands in metals under impact loadings. For classical plasticity, power law strain hardening
with linear thermal softening is defined by Wu et al. (2003a)

σ = σY f(ε)h(T
∗) (2.6)

where f(ε) is the conventional yield function in terms of the effective strain, T ∗ is the temperature
rise, and h(T ∗) is a function of the temperature rise.
In the present SGEP, we follow a similar manner to introduce the thermal softening effect.

Then, the original yield criterion in Eq. (2.4) can be changed to

σt =





σY + (σ
t
0 − σY )

(εt,epe
εt0

)
if εt,epe ¬ εt0

σt0

(εt,epe
εt0

)N
h(T ∗) if εt,epe > ε

t
0

(2.7)
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In Eq. (2.7), for εt,epe > εt0 the material deforms in an elasto-plastic manner, considerable
plastic strain causes softening. The temperature function in Eq. (2.7) is set as

h(T ∗) = 1− cT ∗ (2.8)

where c is the coefficient of thermal softening, and is usually given in terms of the room tem-
perature Tr and melting temperature Tm

c =
1

Tm − Tr
(2.9)

We use the following relation between the temperature rise and plastic strain for an adiabatic
deforming problem

ρcpdT = η̃σedε
p (2.10)

where ρ is metal density, cp is specific heat, η̃ defines percentage of plastic work transformed
into heat, and it is set to 0.9 in this paper.

2.3. Dynamic growth of a void

In Fig. 1, assume that an infinite metal material containing a single void is subjected to the
remote hydrostatic tensile stress papp, and the material is assumed to be uniform and incom-
pressible. The initial radius of the void is A, and the initial radius of a material point is R, as
the hydrostatic tensile stress increases to a certain value, the void begins to grow, the current
radius of the void is a, and the current radius of the reference point is r.

Fig. 1. A void growing in an infinite elasto-plastic medium under the remote hydrostatic tensile
stress papp. Yield starts from the void surface and propagates along the radius direction. The present
radius of the void is a, the present interface between elastic and plastic region is noted by rc

The incompressibility of the material results in the following relation,

r3 −R3 = a3 −A3 (2.11)

By taking the derivative of time on both sides, we have

vr = ṙ =
a2ȧ

r2
(2.12)

The rate forms of strain and strain gradient components can be derived as

ε̇rr =
dvr
dr
= −2a

2ȧ

r3
ε̇θθ = ε̇ϕϕ = −

1

2
ε̇rr =

a2ȧ

r3

η̇rrr =
∂ε̇rr
∂r
=
6a2ȧ

r4
η̇θθr =

∂ε̇θθ
∂r
=
−3a2ȧ
r4

η̇ϕϕr =
∂ε̇ϕϕ
∂r
=
−3a2ȧ
r4

η̇rθθ = η̇θrθ =
ε̇rr − ε̇θθ
r

=
−3a2ȧ
r4

η̇rϕϕ = η̇ϕrϕ =
ε̇rr − ε̇ϕϕ
r

=
−3a2ȧ
r4

(2.13)
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In order to better distinguish the contributions made by the elastic part and the plastic part
in the elasto-plastic deformation, we conduct the following elasto-plastic decomposition

ȧ = ȧeε + ȧ
p
ε sgn (ȧ) = ȧ

e
η + ȧ

p
η sgn (ȧ) (2.14)

The strain and strain gradient components are decomposed into elastic and plastic parts

ε̇ij = ε̇
e
ij + ε̇

p
ij η̇ijk = η̇

e
ijk + η̇

e
ijk (2.15)

The incremental forms of the elastic effective strain, plastic effective strain, elastic effective
strain gradient and plastic effective strain gradient are, respectively

ε̇ee = 2
a2ȧeε
r3

ε̇e = 2
a2ȧpε
r3

η̇ee = 3

√
5

2

a2ȧeη
r4

η̇e = 3

√
5

2

a2ȧpη
r4

(2.16)

The elastic strain can be obtained by integrating Eq. (2.16) in terms of time. Based on the
elastic constitutive law, the stress component and effective stress can be obtained as follows

σrr = 2µε
e
rr σϕϕ = 2µε

e
ϕϕ σθθ = 2µε

e
θθ

σe =

√
3

2
σ′ijσ

′

ij = 3µ|εerr| = 6µ
∑ a2ȧe

r3

(2.17)

The plastic strain can be obtained by integrating the incremental part of the plastic strain.
From Eqs. (2.7)-(2.10), the plastic work done by plastic deformation and transformed heat energy
can be obtained, and the effect of thermal softening can be accounted for.
According to Eq. (2.5), the reference strain and stress are, respectively

εt0 = εY

[
1 +
(3
√
10l

4r

)2β
] γε
2β

σt0 = σY

[
1 +
(3
√
10l

4r

)2β
] γσ
2β

(2.18)

The equation of motion for the above dynamic void growth can be written as

dσrr
dr
− 2σe
r
= ρr̈ (2.19)

The corresponding boundary condition is

σ(r, t) = 0 at r = a σr = p
app at r→∞ (2.20)

According to Eq. (2.11), the acceleration at the position r can be expressed in the form

r̈ = − ∂
∂r

(a2ä
r
+
2aȧ2

r
− a
4ȧ2

2r4

)
(2.21)

By integrating Eqs. (2.19) and (2.21), the equilibrium equation can be obtained as

papp − pres = ρ
(
aä+

3ȧ2

2

)
(2.22)

where, ρ(aä + 3ȧ2/2) represents the effect of inertia, and pres is the resistant stress which can
be expressed as

pres =

∞∫

a

2σe
r
dr =

∞∫

rc

2σe
r
dr +

rc∫

a

2σe
r
dr =

2

3
σt0

∣∣∣
rc
+

rc∫

a

2σe
r
dr (2.23)

where σt0

∣∣∣
rc
is the reference stress on the elastic-plastic boundary, which will become bigger

than the traditional yield stress σY due to the extra hardening effect associated with the strain
gradient, resulting in a higher resistant stress.
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3. Results and discussion

In all simulations, as shown in Fig. 2, the hydrostatic tensile load gradually increases from zero
at a constant loading rate. At the moment t1, the maximum loading ps is reached. After that, the
hydrostatic tensile load is kept constant as ps for a timespan of t2. We adopt material parameters
determined by fitting corresponding experimental results for copper. Readers are referred to Liu
and Soh (2016) for details.

Fig. 2. The loading history of hydrostatic tensile stress applied externally

Table 1. Mechanical properties of the material according to Liu and Soh (2016)

Young’s modulus 118GPa Yield stress 100MPa

Poisson’s ratio 0.35 Work-to-heat ratio 0.9

Specific heat 386 J/(kgK) Density 8.9 · 103 kg/m3
Melting temperature 1358K T-softening coefficient 0.001 K−1

Fig. 3. The curves of the normalized resistant stress to relative growth of the void whose initial size is
A = 2µm, with corresponding quasi-static results included. During the whole process the external
applied stress papp keeps increasing with a rate of 10MPa/ns. Mechanical properties are shown in

Table 1, dislocation coupling factor is β = 0.5 and N = 0.22

Figure 3 shows diagrams of normalized resistant stress versus void growth with and without
the size effect or the thermal softening effect for a void with the initial radius A = 2µm. The
mechanical properties of the material are shown in Table 1. Unless otherwise specified, the
dislocation coupling factor β = 0.5 and hardening index N = 0.22 are adopted in this paper. It
can be seen from Fig. 3 that for l = 2.83µm, as the void begins to grow, the resistant stress pres
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firstly increases quickly until it reaches a maximum value and then it begins to drop once the
void growth a/A exceeds a critical value. The maximum value is defined as a “threshold stress”
for unstable growth of the void and the critical value is typically less than 3. For the athermal
condition, Wu et al. (2003a) obtained similar results. After the void growth exceeds the critical
value, the resistance stress decreases and finally remains at a stable value for the unstable
growth of the void consistent with the results predicted by classical plastic theory (l = 0µm).
Thus, once the void expands to a certain degree, the medium around the void provides a constant
resistance. For l = 0µm, the resistant stress pres firstly increases quickly and then remains almost
unchanged once it has reached a critical value. The quasi-static results are also included in Fig. 3
for comparison purposes. Since under quasi-static loading conditions, there is papp = pres, the
void growth simultaneously stops once the applied stress does not increase any more. Thus in
Fig. 3 we have only provided the increasing stages for quasi-static cases. Before the maximum
loading has been reached, the void growth is stable, and only small deformation happens leading
to unimportant influence of inertia. This explains why the quasi-static results get close to their
athermal counterparts.
Whether l is zero or not, the adiabatic resistant stress (c = 0.001 K−1) is lower than the

athermal one (c = 0K−1). This is due to the fact that under the adiabatic condition, the
plastic work is converted into heat energy at each material point, which will not be transferred
elsewhere, resulting in a temperature rise at the very same material point. Thus, the elastic
stiffness and the yield stress of the material point decreases due to thermal softening according
to Eqs. (2.6) and (2.7). Such a thermal softening promotes void growth, and the material becomes
more susceptible to damage. On the other hand, since thermal softening is neglected under the
athermal conditions, the yield stress is relatively higher, the resistant value is relatively larger,
and the void becomes more difficult to grow.

Fig. 4. The curves of normalized threshold stress, i.e. pc/σY versus the void radius normalized by the
plastic characteristic length, i.e. A/l. The black solid line represents results with the gradient effect, and
the red solid line without the gradient effect, for both of which thermal softening is accounted for. The

material properties are shown in Table 1. The loading rate is 10MPa/ns

When the gradient effect is considered by adopting l = 2.83µm, the threshold stress becomes
higher with the decreasing initial radius of the void, as shown in Fig. 4. When the gradient effect
is not considered, however, the threshold stress does not depend on the initial void size. As the
initial void radius increases, the strain gradient and effective stress decrease sharply according
to Eqs. (2.13)-(2.17) and, therefore, the gradient effect weakens quickly. When the initial radius
is three times of the plastic characteristic length and above, the threshold stress gets close to
the counterpart with no gradient effect, indicating feasibility of neglecting the gradient effect.
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However, for a void size much smaller than it, the size dependence is so strong that neglecting
the gradient effect would lead to a very inaccurate prediction.

Table 2 shows the material parameters used by Wu et al. (2003b) in studying dynamic void
growth. The same parameters are used for simulating the voids with the initial radius being
A = 0.1µm, 1µm, 10µm and 20µm, respectively. As shown in Fig. 5, the hydrostatic tensile
load increases at a rate of 0.1GPa/ns for all cases. When neither the strain gradient effect nor
thermal softening is accounted for, the present results, i.e. the black solid lines coincides well
with those by Wu et al. (2003b), which serves as a validation of the present numerical procedure.
When the load reaches roughly 3.6σY , the void begins to grow. Due to the inertia effect, the
growth rate of the A = 10µm case is the slowest, and the A = 0.1µm case is the fastest. When
the loading stops increasing, void growth continues under the drive of inertia. For the A = 0.1µm
case, the growth rate starts to decrease once the external loading does not increase any more
and, finally, the void expansion ceases. During the whole process, inertia will firstly hinders and
then promotes the void growth.

Table 2. Mechanical properties of the material studied by Wu et al. (2003b)

Young’s modulus 120GPa Yield stress 316.5MPa

Poisson’s ratio 0.361 Work-to-heat ratio 0.9

Specific heat 522 J/(kgK) Density 4.5 · 103 kg/m3
Melting temperature 1941 ± 10K Softening coefficient 5.206 · 10−4K−1

Fig. 5. The simulation results of dynamic growth of a void with the initial void size A = 0.1µm,
A = 1µm, A = 10µm and A = 20µm, respectively, subjected to a prescribed loading with ps = 6.5σY .
The dotted lines and the black lines represent the results of Wu et al. (2003b) and ours when the
gradient effect is excluded, and the red solid lines are results by the present model when the gradient

effect is considered. For all cases, the loading rate from 0 to t1 is 0.1GPa/ns

However, the above tendency is not valid any more if the effects of both strain gradient and
thermal softening are included, as shown by red lines in Fig. 5, where for black dotted and solid
lines, the athermal condition is adopted, while for red lines, the adiabatic condition is adopted.
The material properties are listed in Table 2. The extra hardening effect due to strain gradient
will lift the material strength and make the void growth harder to occur, but thermal softening
tends to promote the growth. Namely, there is a competitive mechanism between these two
influence factors. Particularly, when both effects are excluded the void of A = 0.1µm is the
easiest one to grow, but it becomes the hardest one due to the strain gradient effect as indicated
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by Eqs. (2.18) and (2.23). Under the influence of the gradient effect, the void has not started
quick expansion for the loading of ps = 6.5σY . Moreover, the coordinate in Fig. 5 is the relative
void growth, a/A instead of the present void size a itself, the line for A = 10µm is above that
for A = 20µm.

In order to discuss the strain gradient effect in a separate manner, we temporarily exclude
thermal softening and compare the results with and without the strain gradient effect. As shown
in Fig. 6, four void sizes, i.e. 1µm, 2µm, 5µm and 10µm, are simulated. When the strain
gradient is not considered, all voids with different initial radii begin to grow rapidly when the
loading reaches 11σY . Under the action of inertia, the larger the initial radius, the slower the
growth rate of the void, but eventually all the voids grow at the same speed, and the final growth
rate is independent of the initial radius. When the strain gradient effect is included, the rapid
void growth is delayed. The smaller the void, the more rapid growth is hindered. For example,
for A = 2µm case, the void begins to grow rapidly as the loading reaches approximately 30σY ,
significantly higher than 11σY , the prediction without the strain gradient effect. For A = 5µm
case, the starting time for rapid growth is delayed by 10 ns. After a long enough time, the void
growth rate tends to be consistent with that without the strain gradient effect. For A = 10µm
case, the strain gradient effect becomes so weak that two corresponding lines get close to each
other. Particularly, for A = 1µm case, the final value of the external loading, i.e. ps = 35σY is
still much lower than the threshold stress for rapid void growth. In the above, extra hardening
due to strain gradient increases the threshold stress required for rapid void growth, thus also
delays the initiation of rapid growth. Such an influence is strongly dependent on the void size.
A smaller void size corresponds to a stronger extra hardening due to the strain gradient.

Fig. 6. Diagrams of current void size versus time with (solid) and without (dotted) the strain gradient
effect showing the influence of the strain gradient. Thermal softening is excluded. Material parameters

in Table 1 are used unless otherwise instructed. ps = 35σY , the loading rate is 10MPa/ns

The radial distribution of yield strength is shown in Fig. 7, indicating an obvious size effect.
In the present theory, the size dependence of yield strength is indeed allowed for, as shown in
Eqs. (2.4) and (2.5). Generally speaking, more geometrically necessary dislocation (GND) is
required around a smaller void. From Fig. 7, the reference strain on the void surface is 6.7εY
when A = 1µm, and 1.3εY when A = 2µm, both of which are significantly higher than the
conventional εY . The reference strain is found to decrease sharply with the increasing normalized
radial position. When the normalized distance is large enough, the reference strain gets closer
to εY . For A = 10µm, which is much larger than the plastic characteristic length l = 2.83µm,
the above size effect becomes weaker and weaker.
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Fig. 7. The variation curves of the normalized reference strain versus radial distance from the void
surface when the time is 150 ns which is smaller than t1. Three initial void sizes are studied, i.e.
A = 1µm, 2µm and 10µm, respectively. Mechanical properties of the material are shown in Table 1.
The loading rate is 10MPa/ns, the plastic characteristic length is l = 2.83µm, and the temperature

effect is not considered by letting c = 0K−1

The size effect in the threshold stress for rapid void growth can also be seen in Fig. 8. When
the gradient effect is excluded, the present theory reduces to the classical plasticity. From Fig. 8
it is seen that the threshold stress is independent of the initial void size. However, when the
gradient effect is accounted for, the threshold stress increases quickly with the decreasing initial
void size. For example, the void with A = 1µm has not begun growing rapidly even though the
applied loading has reached 80σY .

Fig. 8. Curves of the normalized hydrostatic tensile stress versus the current void size. The solid lines
correspond to results with the gradient effect, and the dotted lines without the gradient effect. Material
parameters in Table 1 are used unless otherwise instructed. The loading rate is 10MPa/ns, t1 = 1000ns.

Thermal softening is not considered

In order to study the influence of loading conditions on the dynamic void growth, we have
provided results under four different loading rates, i.e. 0.05GPa/ns, 0.01GPa/ns, 0.005 GPa/ns
and 0.001GPa/ns, in Fig. 9, and results under four different maximum applied stresses, i.e.
ps = 25σY , 30σY , 35σY and 45σY , in Fig. 10. In Fig. 9, the time for initiation of rapid growth
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varies with the prescribed loading rates. However, it is found that the void begins to grow when
the loading reaches around 30σY under all loading rates. In other words, the loading rate only
has a negligible effect on the absolute value of the threshold stress for rapid growth. Nevertheless,
under a lower loading rate, the rapid growth is initiated later. The red solid rectangles in Fig. 9
indicate the loading level of 31σY , although the loadings are consistent at different loading rates,
the current sizes of the voids are greatly different. Besides, Fig. 10 shows that the maximum
applied stress ps plays a considerable role in the dynamic void growth. When ps = 25σY , rapid
void growth is not possible to happen since the threshold stress has not been reached. For all ps
larger than 30σY , the void begins to grow rapidly at the same time. And a higher ps results in
a higher rate of rapid growth.

Fig. 9. Curves of the current void size versus time under the following loading rates: 0.05GPa/ns,
0.01GPa/ns, 0.005GPa/ns, 0.001GPa/ns, respectively. The mechanical properties of materials are
shown in Table 1. The red solid rectangles indicate the current void size when the hydrostatic tensile
load reaches 31σY . The plastic characteristic length is l = 2.83µm, the temperature effect is not

considered

Fig. 10. Curves of the current void size versus time for four maximum hydrostatic tensile stresses, i.e.
ps = 25σY , 30σY , 35σY , 45σY , respectively. The mechanical properties of materials are shown in
Table 1. The loading rate is 0.01GPa/ns, the plastic characteristic length is l = 2.83µm, and the

temperature effect is not considered
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Most of the plastic work done during plastic deformation will be converted into heat energy.
Since the high loading rate adopted in this study, the heat exchange between each material
point and its surroundings can be well neglected. As a result, the produced heat will cause
the temperature of the very material point to rise, thus reducing the yield strength. Figure 11
shows the temperature rise around the void, the solid lines represent simulations considering the
gradient effect, and the dotted lines represent simulations ignoring the gradient effect. It can
be found that the temperature rise on the void surface is the highest, and the farther from the
surface, the lower the temperature rise. With the gradient effect included, the temperature rise
on the void surface exceeds 1000K for A = 1µm, indicating possibility of melting. Even for the
biggest void size A = 10µm, the induced temperature rise can still be as high as nearly 700K.
On the void surface, the temperature rise is obviously lifted by taking the gradient effect into
account. However, this is not necessarily true throughout the studied domain. The gradient effect
will enhance the elastic limit and, therefore, delays the occurrence of plastic initiation. Keep in
mind that no heat is produced if the deformation is still purely elastic. This clearly explains why
the gradient effect enlarges the temperature rise on the void surface, but reduces it in a certain
radial distance range. In material points with a radial position large enough, it locates in the
elastic deforming domain, thus the temperature rise is zero.

Fig. 11. Diagrams of temperature rise versus the radial position for void sizes A = 1µm, A = 2µm,
A = 10µm, respectively. The solid and dotted lines are results with and without the gradient effect,
respectively. The curves are drawn when the time is 150 ns from the beginning of applying the loading.
The mechanical properties of the materials are shown in Table 1. The loading rate is 10MPa/ns

Finally, with both the inertia and gradient effects included, we study the influence of thermal
softening. Figure 12 shows results under both adiabatic and athermal conditions. For the biggest
void size A = 10µm, the temperature effect affects the dynamic void growth very slightly.
Considering the temperature effect, the void growth is brought forward by 4 ns for A = 2µm
case, and even by 140 ns for A = 1µm case. When A = 1µm, the adiabatic threshold stress
is 14σY lower than the athermal one. Whether the temperature effect is accounted for or not, the
void will not grow rapidly for A = 0.8µm case, mainly because the gradient effect is dominant
now, which greatly increases the threshold stress required for rapid void growth. We firmly
believe that there must exist a critical initial void radius in the range of (0.8µm,1µm), when
the void is able to rapidly grow under the adiabatic condition, but not able to grow under the
athermal condition.
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Fig. 12. The curves of current void size versus time for the following four initial void radii, i.e.
A = 0.8µm, 1µm, 2µm and 10µm, respectively. The solid and dotted lines are results with and without
thermal softening, respectively. Material parameters in Table 1 are used unless otherwise instructed.
The loading rate is 10MPa/ns, the plastic characteristic length is l = 2.83µm. Both inertial and

gradient effects are included

4. Conclusions

Based on the strain gradient elasto-plasticity recently proposed, we firstly reconstructed the
yield function by considering thermal softening, the inertial effect and extra hardening effect
due to strain gradient. Then the dynamic void growth problem is studied comprehensively.

In the early stage of void growth, inertia of material points around the void hinders the
dynamic growth of the void, but then promotes it, and finally the growth rate gets close to the
one predicted by the conventional plasticity. When the void size is of the order of 0.1µm-1µm,
the gradient effect greatly improves the yield stress in the neighborhood of the void. Meanwhile,
the strain gradient elasto-plasticity can effectively capture the size effect of elastic limit, and
the predicted elastic limit will be higher, so that the threshold stress of the void growth is also
increased, resulting in a significant delay in time of the rapid void growth. Furthermore, most of
the plastic work done at a material point is converted into heat energy, which causes the local
temperature around the void surface to rise and even reach the melting point. The temperature
rise weakens the yield strength of the material, reduces the threshold stress of the dynamic void
growth, and thus promotes the dynamic void growth process.

Additionally, in this study, our focus is put on the spherical growth of voids. In some cases,
the loading conditions can lead to significant deviations. Nevertheless, the present study still
serves as an intuitive guide to a better understanding.
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